关灯 巨大 直达底部
亲,双击屏幕即可自动滚动
对火星轨道变化问题的最后解释

作者君在作品相关中其实已经解释过这个问题。

不过仍然有人质疑。

那么作者君在此列出相关参考文献中的一篇开源论文。

以下是文章内容:

long-ternbsp;integrationsandstabilityofparyorbitsinoursorsystebr>

abstract

wepresenttheresultsofverylong-ternbsp;nuricalintegrationsofparyorbitaltionsover109-yrti-spansincludingallninepsaquickinspectionofournuricaldatashowsthattheparytion,atleastinoursiledynacaldel,seetobequitestableevenoverthisverylongti-spanacloserlookatthelowest-frequencyosciltionsusingalow-passfiltershowsusthepotentiallydiffusivecharacterofterrestrialparytion,especiallythatofrcurythebehaviouroftheeentricityofrcuryinourintegrationsisqualitativelysirtotheresultsfronbsp;jacquesskar'ssecurperturbationtheoryhowever,therearenoarentsecurincreasesofeentricityorinclinationinanyorbitalelentsoftheps,whichyberevealedbystilllonger-ternbsp;nuricalintegrationswehavealsoperfordaupleoftrialintegrationsincludingtionsoftheouterfivepsoverthedurationof±5x1010yrtheresultindicatesthatthethreejorresonancesintheneptune–plutosystenbsp;havebeenintainedoverthe1011-yrti-span

1introduction

11definitionoftheproblebr>

thequestionofthestabilityofoursorsystenbsp;hasbeendebatedoverseveralhundredyears,sincetheeraofnewtontheproblenbsp;hasattractednyfaustheticiansovertheyearsandhaspyedacentralroleinthedevelopntofnon-lineardynacsandchaostheoryhowever,wedonotyethaveadefiniteanswertothequestionofwhetheroursorsystenbsp;isstableornotthisispartlyaresultofthefactthatthedefinitionoftheternbsp;‘stability’isvaguewhenitisusedinretiontotheproblenbsp;ofparytioninthesorsystenbsp;actuallyitisnoteasytogiveaclear,rigorousandphysicallyaningfuldefinitionofthestabilityofoursorsystebr>

angnydefinitionsofstability,hereweadoptthehilldefinitionbsp;actuallythisisnotadefinitionofstability,butofinstabilitywedefineasystenbsp;asbengunstablewhenacloseenunterourssowhereinthesystestartingfronbsp;acertaininitialnfigurationasystenbsp;isdefinedasexperiencingacloseenunterwhentwobodiesroachoneanotherwithinanareaofthergerhillradiusotherwisethesystenbsp;isdefinedasbeingstablehenceforwardwestatethatourparysystenbsp;isdynacallystableifnocloseenunterhensduringtheageofoursorsysteabout±5gyrincidentally,thisdefinitionyberepcedbyoneinwhichanourrenceofanyorbitalcrossingbetweeneitherofapairofpstakespcethisisbecauseweknowfronbsp;experiencethatanorbitalcrossingisverylikelytoleadtoacloseenunterinparyandprotoparysysteofursethisstatentcannotbesilyliedtosystewithstableorbitalresonancessuchastheneptune–plutosystebr>

12previousstudiesandaiofthisresearch

inadditiontothevaguenessofthenceptofstability,thepsinoursorsystenbsp;showacharactertypicalofdynacalchaosthecauseofthischaoticbehaviourisnowpartlyunderstoodasbeingaresultofresonanceoverlinghowever,itwouldrequireintegratingoveranenseleofparysysteincludingallninepsforaperiodveringseveral10gyrtothoroughlyunderstandthelong-ternbsp;evolutionofparyorbits,sincechaoticdynacalsystearecharacterizedbytheirstrongdependenceoninitialnditions

fronbsp;thatpointofview,nyofthepreviouslong-ternbsp;nuricalintegrationsincludedonlytheouterfivepsthisisbecausetheorbitalperiodsoftheouterpsaresochlongerthanthoseoftheinnerfourpsthatitischeasiertofollowthesystenbsp;foragivenintegrationperiodatpresent,thelongestnuricalintegrationspublishedinjournalsarethoseofduncan&a;a;a;a;lissaueralthoughtheirintargetwastheeffectofpost-in-sequencesorsslossonthestabilityofparyorbits,theyperfordnyintegrationsveringupto∼1011yroftheorbitaltionsofthefourjovianpstheinitialorbitalelentsandssesofpsarethesaasthoseofoursorsystenbsp;induncan&a;a;a;a;lissauer'spaper,buttheydecreasethessofthesungraduallyintheirnuricalexperintsthisisbecausetheynsidertheeffectofpost-in-sequencesorsslossinthepapernsequently,theyfoundthatthecrossingti-scaleofparyorbits,whichcanbeatypicalindicatoroftheinstabilityti-scale,isquitesensitivetotherateofssdecreaseofthesunwhenthessofthesunisclosetoitspresentvalue,thejovianpsreinstableover1010yr,orperhapslongerduncan&a;a;a;a;lissaueralsoperfordfoursirexperintsontheorbitaltionofsevenps,whichveraspanof∼109yrtheirexperintsonthesevenpsarenotyetrehensive,butitseethattheterrestrialpsalsoreinstableduringtheintegrationperiod,intainingalstregurosciltions

ontheotherhand,inhisauratese-analyticalsecurperturbationtheory,skarfindsthatrgeandirregurvariationscanearintheeentricitiesandinclinationsoftheterrestrialps,especiallyofrcuryandrsonati-scaleofseveral109yrtheresultsofskar'ssecurperturbationtheoryshouldbenfirdandinvestigatedbyfullynuricalintegrations

inthispaperwepresentprelinaryresultsofsixlong-ternbsp;nuricalintegrationsonallnineparyorbits,veringaspanofseveral109yr,andoftwootherintegrationsveringaspanof±5x1010yrthetotalepsedtiforallintegrationsisrethan5yr,usingseveraldedicatedpcsandworkstationsoneofthefundantalnclusionsofourlong-ternbsp;integrationsisthatsorsystenbsp;parytionseetobestableinterofthehillstabilityntionedabove,atleastoverati-spanof±4gyractually,inournuricalintegrationsthesystenbsp;wasfarrestablethanwhatisdefinedbythehillstabilitycriterionbsp;notonlydidnocloseenunterhenduringtheintegrationperiod,butalsoalltheparyorbitalelentshavebeennfinedinanarrowregionbothintiandfrequencydoin,thoughparytionsarestochasticsincethepurposeofthispaperistoexhibitandoverviewtheresultsofourlong-ternbsp;nuricalintegrations,weshowtypicalexalefiguresasevidenceoftheverylong-ternbsp;stabilityofsorsystenbsp;parytionforreaderswhohaverespecificanddeeperinterestsinournuricalresults,wehavepreparedawebpage,whereweshowraworbitalelents,theirlow-passfilteredresults,variationofdeunayelentsandangurntunbsp;deficit,andresultsofoursileti–frequencyanalysisonallofourintegrations

insection2webrieflyexpinourdynacaldel,nuricalthodandinitialnditionsusedinourintegrationssection3isdevotedtoadescriptionofthequickresultsofthenuricalintegrationsverylong-ternbsp;stabilityofsorsystenbsp;parytionisarentbothinparypositionsandorbitalelentsaroughestitionofnuricalerrorsisalsogivensection4goesontoadiscussionofthelongest-ternbsp;variationofparyorbitsusingalow-passfilterandincludesadiscussionofangurntunbsp;deficitinsection5,wepresentasetofnuricalintegrationsfortheouterfivepsthatspans±5x1010yrinsection6wealsodiscussthelong-ternbsp;stabilityoftheparytionanditspossiblecause

2descriptionofthenuricalintegrations

(本部分涉及比较复杂的积分计算,作者君就不贴上来了,贴上来了起点也不一定能成功显示。)

23nuricalthod

weutilizeasend-orderwisdoholnsylecticpasourinintegrationthodwithaspecialstart-upproceduretoreducethetruncationerrorofanglevariables,‘warnbsp;start’

thestepsizeforthenuricalintegrationsis8dthroughoutallintegrationsofthenineps,whichisabout111oftheorbitalperiodoftheinnerstpasforthedeternationofstepsize,wepartlyfollowthepreviousnuricalintegrationofallninepsinsussn&a;a;a;a;wisdonbsp;andsaha&a;a;a;a;treineweroundedthedecilpartofthetheirstepsizesto8tokethestepsizealtipleof2inordertoreducetheautionofround-offerrorintheutationprocessesinretiontothis,wisdonbsp;&a;a;a;a;holnperfordnuricalintegrationsoftheouterfiveparyorbitsusingthesylecticpwithastepsizeof400d,11083oftheorbitalperiodofjupitertheirresultseetobeaurateenough,whichpartlyjustifiesourthodofdeterningthestepsizehowever,sincetheeentricityofjupiterischsllerthanthatofrcury,weneedsocarewhenwearetheseintegrationssilyinterofstepsizes

intheintegrationoftheouterfiveps,wefixedthestepsizeat400d

weadoptgauss'fandgfunctionsinthesylecticptogetherwiththethird-orderhalleythodasasolverforkeplerequationsthenuerofxinbsp;iterationswesetinhalley'sthodis15,buttheyneverreachedthexinbsp;inanyofourintegrations

theintervalofthedataoutputis200000dforthecalcutionsofallnineps,andabout8000000dfortheintegrationoftheouterfiveps

althoughnooutputfilteringwasdonewhenthenuricalintegrationswereinprocess,weliedalow-passfiltertotheraworbitaldataafterwehadletedallthecalcutionsseesection41forredetail

24errorestition

241retiveerrorsintotalenergyandangurntubr>

aordingtooneofthebasicpropertiesofsylecticintegrators,whichnservethephysicallynservativequantitieswell,ourlong-ternbsp;nuricalintegrationsseenbsp;tohavebeenperfordwithverysllerrorstheaveragedretiveerrorsoftotalenergyandoftotalangurntunbsp;havereinednearlynstantthroughouttheintegrationperiodthespecialstartupprocedure,warnbsp;start,wouldhavereducedtheaveragedretiveerrorintotalenergybyaboutoneorderofgnitudeorre

retivenuricalerrorofthetotalangurntunbsp;δaa0andthetotalenergyδee0inournuricalintegrationsn±1,2,3,whereδeandδaaretheabsolutechangeofthetotalenergyandtotalangurnturespectively,ande0anda0aretheirinitialvaluesthehorizontalunitisgyr

notethatdifferentoperatingsyste,differenttheticallibraries,anddifferenthardwarearchitecturesresultindifferentnuricalerrors,throughthevariationsinround-offerrorhandlingandnuricalalgorithintheupperpaneloffig1,wecanregnizethissituationinthesecurnuricalerrorinthetotalangurntuwhichshouldberigorouslypreserveduptochine-eprecision

242errorinparylongitudes

sincethesylecticpspreservetotalenergyandtotalangurntunbsp;ofn-bodydynacalsysteinherentlywell,thedegreeoftheirpreservationynotbeagoodasureoftheauracyofnuricalintegrations,especiallyasaasureofthepositionalerrorofps,ietheerrorinparylongitudestoestitethenuricalerrorintheparylongitudes,weperfordthefollowingprocedureswearedtheresultofourinlong-ternbsp;integrationswithsotestintegrations,whichspanchshorterperiodsbutwithchhigherauracythantheinintegrationsforthispurpose,weperfordachreaurateintegrationwithastepsizeof0125dspanning3x105yr,startingwiththesainitialnditionsasinthen−1integrationwensiderthatthistestintegrationprovidesuswitha‘pseudo-true’solutionofparyorbitalevolutionnext,wearethetestintegrationwiththeinintegration,n−1fortheperiodof3x105yr,weseeadifferenceinananoliesoftheearthbetweenthetwointegrationsof∼052°thisdifferencecanbeextrapotedtothevalue∼8700°,about25rotationsofearthafter5gyr,sincetheerroroflongitudesincreaseslinearlywithtiinthesylecticpsirly,thelongitudeerrorofplutocanbeestitedas∼12°thisvalueforplutoischbetterthantheresultinkinoshita&a;a;a;a;nakaiwherethedifferenceisestitedas∼60°

3nuricalresults–ignceattherawdata

inthissectionwebrieflyreviewthelong-ternbsp;stabilityofparyorbitaltionthroughsosnapshotsofrawnuricaldatatheorbitaltionofpsindicateslong-ternbsp;stabilityinallofournuricalintegrationsbsp;noorbitalcrossingsnorcloseenuntersbetweenanypairofpstookpce

31generaldescriptionofthestabilityofparyorbits

first,webrieflylookatthegeneralcharacterofthelong-ternbsp;stabilityofparyorbitsourinterestherefocusesparticurlyontheinnerfourterrestrialpsforwhichtheorbitalti-scalesarechshorterthanthoseoftheouterfivepsaswecanseeclearlyfronbsp;thepnarorbitalnfigurationsshowninfigs2and3,orbitalpositionsoftheterrestrialpsdifferlittlebetweentheinitialandfinalpartofeachnuricalintegration,whichspansseveralgyrthesolidlinesdenotingthepresentorbitsofthepsliealstwithintheswarnbsp;ofdotseveninthefinalpartofintegrationsandthisindicatesthatthroughouttheentireintegrationperiodthealstregurvariationsofparyorbitaltionreinnearlythesaastheyareatpresent

verticalviewofthefourinnerparyorbitsattheinitialandfinalpartsoftheintegrationsn±1theaxesunitsareauthexy-pneissettotheinvariantpneofsorsystenbsp;totalangurntunbsp;theinitialpartofn+1thefinalpartofn+1theinitialpartofn−1thefinalpartofn−1ineachpanel,atotalof23684pointsareplottedwithanintervalofabout2190yrover547x107yrsolidlinesineachpaneldenotethepresentorbitsofthefourterrestrialps

thevariationofeentricitiesandorbitalinclinationsfortheinnerfourpsintheinitialandfinalpartoftheintegrationn+1isshowninfig4asexpected,thecharacterofthevariationofparyorbitalelentsdoesnotdiffersignificantlybetweentheinitialandfinalpartofeachintegration,atleastforvenus,earthandrstheelentsofrcury,especiallyitseentricity,seenbsp;tochangetoasignificantextentthisispartlybecausetheorbitalti-scaleofthepistheshortestofalltheps,whichleadstoarerapidorbitalevolutionthanotherps;theinnerstpybenearesttoinstabilitythisresultearstobeinsoagreentwithskar'sexpectationsthatrgeandirregurvariationsearintheeentricitiesandinclinationsofrcuryonati-scaleofseveral109yrhowever,theeffectofthepossibleinstabilityoftheorbitofrcuryynotfatallyaffecttheglobalstabilityofthewholeparysystenbsp;owingtothesllssofrcurywewillntionbrieflythelong-ternbsp;orbitalevolutionofrcuryterinsection4usinglow-passfilteredorbitalelents

theorbitaltionoftheouterfivepsseerigorouslystableandquitereguroverthisti-span

32ti–frequencyps

althoughtheparytionexhibitsverylong-ternbsp;stabilitydefinedasthenon-existenceofcloseenunterevents,thechaoticnatureofparydynacscanchangetheosciltoryperiodandalitudeofparyorbitaltiongraduallyoversuchlongti-spansevensuchslightfluctuationsoforbitalvariationinthefrequencydoin,particurlyinthecaseofearth,canpotentiallyhaveasignificanteffectonitssurfaceclitesystenbsp;throughsorinsotionvariation

togiveanoverviewofthelong-ternbsp;changeinperiodicityinparyorbitaltion,weperfordnyfastfouriertransfortionsalongthetiaxis,andsuperposedtheresultingperiodgratodrawtwo-dinsionalti–frequencypsthespecificroachtodrawingtheseti–frequencypsinthispaperisverysile–chsilerthanthewaveletanalysisorskar'sfrequencyanalysis

dividethelow-passfilteredorbitaldataintonyfragntsofthesalengththelengthofeachdatasegntshouldbealtipleof2inordertolythefft

eachfragntofthedatahasargeoverlingpartbsp;forexale,whentheithdatabeginsfronbsp;t=tiandendsatt=ti+t,thenextdatasegntrangesfronbsp;ti+δt≤ti+δt+t,whereδttwentinuethisdivisionuntilwereachacertainnuernbywhichtn+treachesthetotalintegrationlength

welyanffttoeachofthedatafragnts,andobtainnfrequencydiagra

ineachfrequencydiagranbsp;obtainedabove,thestrengthofperiodicitycanberepcedbyagrey-scalechart

weperfornbsp;therepcent,andnnectallthegrey-scalechartsintoonegraphforeachintegrationthehorizontalaxisofthesenewgraphsshouldbetheti,iethestartingtisofeachfragntofdatatheverticalaxisrepresentstheperiodoftheosciltionoforbitalelents

wehaveadoptedanfftbecauseofitsoverwhelngspeed,sincetheauntofnuricaldatatobedeosedintofrequencyonentsisterriblyhuge

atypicalexaleoftheti–frequencypcreatedbytheaboveproceduresisshowninagrey-scalediagranbsp;asfig5,whichshowsthevariationofperiodicityintheeentricityandinclinationofearthinn+2integrationinfig5,thedarkareashowsthatatthetiindicatedbythevalueontheabscissa,theperiodicityindicatedbytheordinateisstrongerthaninthelighterareaarounditwecanregnizefronbsp;thispthattheperiodicityoftheeentricityandinclinationofearthonlychangesslightlyovertheentireperiodveredbythen+2integrationthisnearlyregurtrendisqualitativelythesainotherintegrationsandforotherps,althoughtypicalfrequenciesdifferpbypandelentbyelent

42long-ternbsp;exchangeoforbitalenergyandangurntubr>

wecalcuteverylong-periodicvariationandexchangeofparyorbitalenergyandangurntunbsp;usingfiltereddeunayelentsl,g,hgandhareequivalenttotheparyorbitalangurntunbsp;anditsverticalonentperunitsslisretedtotheparyorbitalenergyeperunitssase=−μ22l2ifthesystenbsp;isletelylinear,theorbitalenergyandtheangurntunbsp;ineachfrequencybinstbenstantnon-linearityintheparysystenbsp;cancauseanexchangeofenergyandangurntunbsp;inthefrequencydointhealitudeofthelowest-frequencyosciltionshouldincreaseifthesystenbsp;isunstableandbreaksdowngraduallyhowever,suchasytonbsp;ofinstabilityisnotpronentinourlong-ternbsp;integrations

infig7,thetotalorbitalenergyandangurntunbsp;ofthefourinnerpsandallninepsareshownforintegrationn+2theupperthreepanelsshowthelong-periodicvariationoftotalenergy,totalangurntunbsp;,andtheverticalonentoftheinnerfourpscalcutedfronbsp;thelow-passfiltereddeunayelentse0,g0,h0denotetheinitialvaluesofeachquantitytheabsolutedifferencefronbsp;theinitialvaluesisplottedinthepanelsthelowerthreepanelsineachfigureshowe-e0,g-g0andh-h0ofthetotalofninepsthefluctuationshowninthelowerpanelsisvirtuallyentirelyaresultofthessivejovianps

aringthevariationsofenergyandangurntunbsp;oftheinnerfourpsandallnineps,itisarentthatthealitudesofthoseoftheinnerpsarechsllerthanthoseofallninepsbsp;thealitudesoftheouterfivepsarechrgerthanthoseoftheinnerpsthisdoesnotanthattheinnerterrestrialparysubsystenbsp;isrestablethantheouteronebsp;thisissilyaresultoftheretivesllnessofthessesofthefourterrestrialpsaredwiththoseoftheouterjovianpsanotherthingwenoticeisthattheinnerparysubsystenbsp;ybeunstablererapidlythantheouteronebecauseofitsshorterorbitalti-scalesthiscanbeseeninthepanelsdenotedasinner4infig7wherethelonger-periodicandirregurosciltionsarerearentthaninthepanelsdenotedastotal9actually,thefluctuationsintheinner4panelsaretoargeextentasaresultoftheorbitalvariationofthercuryhowever,wecannotneglectthentributionfronbsp;otherterrestrialps,aswewillseeinsubsequentsections

44long-ternbsp;uplingofseveralneighbouringppairs

letusseesoindividualvariationsofparyorbitalenergyandangurntunbsp;expressedbythelow-passfiltereddeunayelentsfigs10and11showlong-ternbsp;evolutionoftheorbitalenergyofeachpandtheangurntunbsp;inn+1andn−2integrationswenoticethatsopsfornbsp;arentpairsinteroforbitalenergyandangurntunbsp;exchangeinparticur,venusandearthkeatypicalpairinthefigures,theyshownegativerretionsinexchangeofenergyandpositiverretionsinexchangeofangurntunbsp;thenegativerretioninexchangeoforbitalenergyansthatthetwopsfornbsp;acloseddynacalsystenbsp;interoftheorbitalenergythepositiverretioninexchangeofangurntunbsp;ansthatthetwopsaresiltaneouslyundercertainlong-ternbsp;perturbationscandidatesforperturbersarejupiterandsaturnalsoinfig11,wecanseethatrsshowsapositiverretionintheangurntunbsp;variationtothevenus–earthsystenbsp;rcuryexhibitscertainnegativerretionsintheangurntunbsp;versusthevenus–earthsystewhichseetobeareactioncausedbythenservationofangurntunbsp;intheterrestrialparysubsystebr>

itisnotclearatthentwhythevenus–earthpairexhibitsanegativerretioninenergyexchangeandapositiverretioninangurntunbsp;exchangeweypossiblyexpinthisthroughobservingthegeneralfactthattherearenosecurterinparysejoraxesuptosend-orderperturbationtheoriesthisansthattheparyorbitalenergyghtbechlessaffectedbyperturbingpsthanistheangurntunbsp;exchangehence,theeentricitiesofvenusandearthcanbedisturbedeasilybyjupiterandsaturn,whichresultsinapositiverretionintheangurntunbsp;exchangeontheotherhand,thesejoraxesofvenusandeartharelesslikelytobedisturbedbythejovianpsthustheenergyexchangeybelitedonlywithinthevenus–earthpair,whichresultsinanegativerretionintheexchangeoforbitalenergyinthepair

asfortheouterjovianparysubsystejupiter–saturnanduranus–neptuneseenbsp;tokedynacalpairshowever,thestrengthoftheiruplingisnotasstrongaredwiththatofthevenus–earthpair

5±5x1010-yrintegrationsofouterparyorbits

sincethejovianparyssesarechrgerthantheterrestrialparysses,wetreatthejovianparysystenbsp;asanindependentparysystenbsp;interofthestudyofitsdynacalstabilityhence,weaddedaupleoftrialintegrationsthatspan±5x1010yr,includingonlytheouterfivepstheresultsexhibittherigorousstabilityoftheouterparysystenbsp;overthislongti-spanorbitalnfigurations,andvariationofeentricitiesandinclinationsshowthisverylong-ternbsp;stabilityoftheouterfivepsinboththetiandthefrequencydoinsalthoughwedonotshowpshere,thetypicalfrequencyoftheorbitalosciltionofplutoandtheotherouterpsisalstnstantduringtheseverylong-ternbsp;integrationperiods,whichisdenstratedintheti–frequencypsonourwebpage

inthesetwointegrations,theretivenuricalerrorinthetotalenergywas∼10−6andthatofthetotalangurntunbsp;was∼10−10

51resonancesintheneptune–plutosystebr>

kinoshita&a;a;a;a;nakaiintegratedtheouterfiveparyorbitsover±55x109yrtheyfoundthatfourjorresonancesbetweenneptuneandplutoareintainedduringthewholeintegrationperiod,andthattheresonancesybetheincausesofthestabilityoftheorbitofplutothejorfourresonancesfoundinpreviousresearchareasfollowsinthefollowingdescription,λdenotestheanlongitude,Ωisthelongitudeoftheascendingnodeandϖisthelongitudeofperihelionsubscriptspandndenoteplutoandneptune

antionresonancebetweenneptuneandplutothecriticalarguntθ1=3λp−2λn−ϖplibratesaround180°withanalitudeofabout80°andalibrationperiodofabout2x104yr

thearguntofperihelionofplutowp=θ2=ϖp−Ωplibratesaround90°withaperiodofabout38x106yrthedonantperiodicvariationsoftheeentricityandinclinationofplutoaresynchronizedwiththelibrationofitsarguntofperihelionthisisanticipatedinthesecurperturbationtheorynstructedbykozai

thelongitudeofthenodeofplutoreferredtothelongitudeofthenodeofneptune,θ3=Ωp−Ωn,circutesandtheperiodofthiscircutionisequaltotheperiodofθ2librationwhenθ3beszero,iethelongitudesofascendingnodesofneptuneandplutooverp,theinclinationofplutobesxitheeentricitybesninbsp;andthearguntofperihelionbes90°whenθ3bes180°,theinclinationofplutobesnitheeentricitybesxinbsp;andthearguntofperihelionbes90°againwillia&a;a;a;a;bensonanticipatedthistypeofresonance,ternfirdbyni,nobili&a;a;a;a;carpino

anarguntθ4=ϖp−ϖn+3libratesaround180°withalongperiod,∼57x108yr

inournuricalintegrations,theresonances–arewellintained,andvariationofthecriticalarguntsθ1,θ2,θ3reinsirduringthewholeintegrationperiodhowever,thefourthresonanceearstobedifferentbsp;thecriticalarguntθ4alternateslibrationandcircutionovera1010-yrti-scalethisisaninterestingfactthatkinoshita&a;a;a;a;nakai'sshorterintegrationswerenotabletodisclose

6discussion

whatkindofdynacalchanisnbsp;intainsthislong-ternbsp;stabilityoftheparysystenbsp;wecaniediatelythinkoftwojorfeaturesthatyberesponsibleforthelong-ternbsp;stabilityfirst,thereseenbsp;tobenosignificantlower-orderresonancesbetweenanypairangtheninepsjupiterandsaturnareclosetoa5nbsp;antionresonance,butnotjustintheresonancezonehigher-orderresonancesycausethechaoticnatureoftheparydynacaltion,buttheyarenotsostrongastodestroythestableparytionwithinthelifetioftherealsorsystenbsp;thesendfeature,whichwethinkisreiortantforthelong-ternbsp;stabilityofourparysysteisthedifferenceindynacaldistancebetweenterrestrialandjovianparysubsystewhenweasureparyseparationsbythetualhillradii,separationsangterrestrialpsaregreaterthan26rh,whereasthoseangjovianpsarelessthan14rhthisdifferenceisdirectlyretedtothedifferencebetweendynacalfeaturesofterrestrialandjovianpsterrestrialpshavesllersses,shorterorbitalperiodsandwiderdynacalseparationtheyarestronglyperturbedbyjovianpsthathavergersses,longerorbitalperiodsandnarrowerdynacalseparationjovianpsarenotperturbedbyanyotherssivebodies

thepresentterrestrialparysystenbsp;isstillbeingdisturbedbythessivejovianpshowever,thewideseparationandtualinteractionangtheterrestrialpsrendersthedisturbanceineffective;thedegreeofdisturbancebyjovianpsiso,sincethedisturbancecausedbyjovianpsisaforcedosciltionhavinganalitudeofoheighteningofeentricity,forexaleo∼005,isfarfronbsp;sufficienttoprovokeinstabilityintheterrestrialpshavingsuchawideseparationas26rhthusweassuthatthepresentwidedynacalseparationangterrestrialpsisprobablyoneofthestsignificantnditionsforintainingthestabilityoftheparysystenbsp;overa109-yrti-spanourdetailedanalysisoftheretionshipbetweendynacaldistancebetweenpsandtheinstabilityti-scaleofsorsystenbsp;parytionisnowon-going

althoughournuricalintegrationsspanthelifetiofthesorsystethenuerofintegrationsisfarfronbsp;sufficienttofilltheinitialphasespaceitisnecessarytoperfornbsp;reandrenuricalintegrationstonfirnbsp;andexaneindetailthelong-ternbsp;stabilityofourparydynacs

——以上文段引自ito,t&a;a;a;tanikawa,klong-ternbsp;integrationsandstabilityofparyorbitsinoursorsystenbsp;nnotrastronsoc336,483–500

这只是作者君参考的一篇文章,关于太阳系的稳定性。

还有其他论文,不过也都是英文的,相关课题的中文文献很少,那些论文下载一篇要九美元(《nature》真是暴利),作者君写这篇文章的时候已经回家,不在检测中心,所以没有数据库的使用权,下不起,就不贴上来了。

为您推荐